Simple Additive Weighting (SAW)
Metode Simple Additive Weighting (SAW) sering juga dikenal istilah metode penjumlahan terbobot.
Konsep dasar metode SAW adalah mencari penjumlahan terbobot dari rating kinerja pada setiap alternatif pada semua atribut (Fishburn, 1967)(MacCrimmon, 1968).
Metode SAW membutuhkan proses normalisasi matriks keputusan (X) ke suatu skala yang dapat diperbandingkan dengan semua rating alternatif yang ada.
Formula untuk melakukan normalisasi tersebut adalah sebagai berikut:
Dengan rij adalah rating kinerja ternormalisasi dari alternatif Ai pada atribut Cj; i=1,2,...,m dan j=1,2,...,n.
Nilai preferensi untuk setiap alternatif (Vi) diberikan sebagai:
Nilai Vi yang lebih besar mengindikasikan bahwa alternatif Ai lebih terpilih.
Contoh 1
Suatu institusi perguruan tinggi akan memilih seorang karyawannya untuk dipromosikan sebagai kepala unit sistem informasi.
Ada empat kriteria yang digunakan untuk melakukan penilaian, yaitu:
C1 = tes pengetahuan (wawasan) sistem informasi
C2 = praktek instalasi jaringan
C3 = tes kepribadian
C4 = tes pengetahuan agama
Pengambil keputusan memberikan bobot untuk setiap kriteria sebagai berikut: C1 = 35%; C2 = 25%; C3 = 25%; dan C4 = 15%.
Ada enam orang karyawan yang menjadi kandidat (alternatif) untuk dipromosikan sebagai kepala unit, yaitu:
A1 = Indra,
A2 = Roni,
A3 = Putri,
A4 = Dani,
A5 = Ratna, dan
A6 = Mira.
Tabel nilai alternatif di setiap kriteria:
Normalisasi:
dst
Hasil normalisasi:
Proses perankingan dengan menggunakan bobot yang telah diberikan oleh pengambil keputusan:
w = [0,35 0,25 0,25 0,15]
Hasil yang diperoleh adalah sebagai berikut:
Nilai terbesar ada pada V5 sehingga alternatif A5 adalah alternatif yang terpilih sebagai alternatif terbaik.
Dengan kata lain, Ratna akan terpilih sebagai kepala unit sistem informasi.
Contoh 2
Sebuah perusahaan makanan ringan XYZ akan menginvestasikan sisa usahanya dalam satu tahun.
Beberapa alternatif investasi telah akan diidentifikasi. Pemilihan alternatif terbaik ditujukan selain untuk keperluan investasi, juga dalam rangka meningkatkan kinerja perusahaan ke depan.
Beberapa kriteria digunakan sebagai bahan pertimbangan untuk mengambil keputusan, yaitu:
C1 = Harga, yaitu seberapa besar harga barang tersebut.
C2 = Nilai investasi 10 tahun ke depan, yaitu seberapa besar nilai investasi barang dalam jangka waktu 10 tahun ke depan.
C3 = Daya dukung terhadap produktivitas perusahaan, yaitu seberapa besar peranan barang dalam mendukung naiknya tingkat produktivitas perusahaan. Daya dukung diberi nilai: 1 = kurang mendukung, 2 = cukup mendukung; dan 3 = sangat mendukung.
C4 = Prioritas kebutuhan, merupakan tingkat kepentingan (ke-mendesak-an) barang untuk dimiliki perusahaan. Prioritas diberi nilai: 1 = sangat berprioritas, 2 = berprioritas; dan 3 = cukup berprioritas.
C5 = Ketersediaan atau kemudahan, merupakan ketersediaan barang di pasaran. Ketersediaan diberi nilai: 1 = sulit diperoleh, 2 = cukup mudah diperoleh; dan 3 = sangat mudah diperoleh.
Dari pertama dan keempat kriteria tersebut, kriteria pertama dan keempat merupakan kriteria biaya, sedangkan kriteria kedua, ketiga, dan kelima merupakan kriteria keuntungan.
Pengambil keputusan memberikan bobot untuk setiap kriteria sebagai berikut: C1 = 25%; C2 = 15%; C3 = 30%; C4 = 25; dan C5 = 5%.
Ada empat alternatif yang diberikan, yaitu:
A1 = Membeli mobil box untuk distribusi barang ke gudang;
A2 = Membeli tanah untuk membangun gudang baru;
A3 = Maintenance sarana teknologi informasi;
A4 = Pengembangan produk baru.
Nilai setiap alternatif pada setiap kriteria:
Normalisasi:
dst
Hasil normalisasi:
Proses perankingan dengan menggunakan bobot yang telah diberikan oleh pengambil keputusan:
w = [0,25 0,15 0,30 0,25 0,05]
Hasil yang diperoleh adalah sebagai berikut:
Nilai terbesar ada pada V3 sehingga alternatif A3 adalah alternatif yang terpilih sebagai alternatif terbaik. Dengan kata lain, maintenance sarana teknologi informasi akan terpilih sebagai solusi untuk investasi sisa usaha.
Comments